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LETTER TO THE EDITOR

Spontaneous magnetic flux and quantum noise in an
annular mesoscopic SND junction

Alexandre M Zagoskin† and Masaki Oshikawa‡
Physics and Astronomy Department, The University of British Columbia, 6224 Agricultural
Road, Vancouver, BC, V6T 1Z1, Canada

Received 4 November 1997

Abstract. We consider spontaneous magnetic flux in an annulars-wave/normal metal/d-
wave superconductor (SND) Josephson junction. The flux magnitude is not quantized and
is determined by the parameters of the system. In an isolated system, quantum fluctuations
of the superconducting phase take place, leading to quantum flux noise. The possibilities of
experimental observations of the effect are discussed.

Mesoscopic SNS systems containing superconductors with different pairing symmetry
promise a whole new range of phenomena, such as half-periodic Josephson effect (Zagoskin
1997) and spontaneous current parallel to the interface (Hucket al 1997). In the latter paper
it was shown that due to local violation ofT -symmetry, spontaneous currents should flow
parallel to the SN interface in the normal part of the system; the authors noted that such a
current is difficult to observe directly, since it will average to zero over short distances.

This difficulty does not appear in a doubly connected SND system. There the
spontaneous current would give rise to an equilibrium magnetic flux. Its magnitude is
less than80 and is determined only by the parameters of the system. It should not be
mixed up with the fractional flux that is predicted in a contour with aT -symmetry-violating
junction (Hucket al 1997, Yip et al 1993, Sigristet al 1995). The latter is created by the
current flowacross the junction; the former is directly created by the spontaneous current
flowing parallel to the SN interface. It is therefore an analog of persistent currents in
normal mesoscopic rings (Kulik 1970, Levyet al 1991, Loss 1992), when theT -symmetry
is broken by an external magnetic flux.

We consider here an annular SND junction (figure 1). This idealized structure consists
of the inner (s-wave) superconducting contactS, conductingN , and the outer (d-wave)
superconducting ringD. The splits inS andD ensure that the screening supercurrents in
these electrodes do not mask the effects of spontaneous currents in the normal part of the
system,N . For the sake of simplicity, we assume that the orientation of thed-wave order
parameter positive and negative lobes with respect to the radius vector is the same along
the d-wave ring.

We calculate Josephson current in the system, following Zagoskin (1997). It is carried
through the normal region by two sets of Andreev levels, coupled to positive and negative
lobes of thed-wave order parameter (chosen to be real; the phase difference across the
contact is thusφ, where11eiφ is the order parameter of thes-wave superconductor). We
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Figure 1. Annular SND junction. Thec-axis of thed-wave superconductor is chosen to be
parallel to the SD boundary;θ is the angle between the SD boundary and the nodal plane of the
d-wave order parameter (06 θ 6 π/2).

are considering a ‘small’ junction limit, where the influence on the Josephson current of its
own magnetic field can be neglected. This imposes a condition (see figure 1)

2πR < λJ (1)

whereλJ =
√
h̄c2/8πejc3 is the Josephson penetration length (Barone and Paternò 1982);

jc is the critical Josephson current density, and3 = W +λL,1+λL,2 is the integral London
penetration length,λL,a being the penetration length in theath superconductor. In the case
of an SNS junction

λJ ≈ λF
√
W

3

c/vF

4παf s
< λF

√
c/vF

4παf s
≡ λF ζ (2)

whereλF is the Fermi wavelength in the normal part of the system, andαf s ≡ e2/h̄c ≈
1/137.

Using the set of cylindric coordinates (r, α, z), we write the Bogoliubov–de Gennes
equations in the normal region for a mode with vertical momentumkz as(− 1

2m∗ ∇2− µ⊥ 0
0 1

2m∗ ∇2+ µ⊥

)(
u(r, α; kz)
v(r, α; kz)

)
= E

(
u(r, α; kz)
v(r, α; kz)

)
(3)

whereµ⊥ = (k2
F − k2

z )/2m
∗ ≡ k2

⊥/2m
∗ and m∗ is the effective mass of the electron.

Expanding u, v over azimuthal modes,u(r, α) = ∑
n U
+
n (r)e

inα/
√
r, v(r, α) =∑

n U
−
n (r)e

inα/
√
r, we find:

− d2

dr2
U±n (r)+

n2− 1/4

r2
U±n (r) =

(±2m∗E + k2
⊥
)
U±n (r). (4)

The Andreev levels are determined from the quantization condition (Kadigrobovet al
1995)∮
p dr =

∫ R+W

R

drp(r, E)+
∫ R

R+W
drp(r,−E) = 2πm+ π ± (φ + δn,kz) (5)
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wherem is integer, andp(r, E) = (k2
⊥ + (n2 − 1/4)/r2 + 2m∗E)1/2. The intrinsic phase

shift δn,kz in mode (n, kz) is zero if the corresponding lobe ofd-wave order parameter
carries positive sign andπ otherwise (Zagoskin 1997). The radial and azimuthal currents
in a n, kz-mode are now easily found as:

J
r(a)
n, kz

(
φ + δn, kz

) = j r(a)n, kz
F

(
π

βε(n, kz)
,

1

τε(n, kz)
; φ + δn, kz

)
. (6)

Here j r(a)n, kz
is the partial radial (azimuthal) current carried by Andreev levels with energies

E ≈ 0:

j rn, kz = eε
(
n, kz

)
(7)

jan, kz =
eε(n, kz)n

2π(n2− 1/4)1/2

(
arctan

[
(k⊥(R +W))2
n2− 1/4

− 1

]
− arctan

[
(k⊥R)2

n2− 1/4
− 1

])
. (8)

and

ε
(
n, kz

) = k2
⊥/2m

∗

[k2
⊥(R +W)2− (n2− 1/4)]1/2− [k2

⊥R2− (n2− 1/4)]1/2
(9)

plays the role of the interlevel spacingv‖F /2W of a planar contact. The currents depend on
the phase through

F

(
π

βε(n, kz)
,

1

τε(n, kz)
; φ + δn, kz

)
= 2

π

∞∑
m=1

(−1)m+1 sinm(φ + δn, kz )
sinh πm

βε(n, kz)

πe−m/τε(n, kz)

βε(n, kz)
(10)

whereτ � ε(n, kz)
−1 is the elastic scattering time. In the limit of zero temperature and no

scatteringF(0, 0; φ) becomes the 2π -periodic sawtooth of unit amplitude.
First we find the Josephson (radial) current:

IJ (φ) =
+∑
n, kz

Jr
(
n, kz; φ

)+ −∑
n, kz

Jr
(
n, kz; φ + π

)
. (11)

The ‘±’-sums are taken over zero- (δn, kz = 0) andπ -levels (δn, kz = π ), coupled to positive
and negative lobes of thed-wave order parameter respectively. At zero temperature and
without elastic scattering this reduces to

IJ (φ) = 1+ Z
2

I0F(0, 0; φ)+ 1− Z
2

I0F(0, 0; φ + π) (12)

whereI0 = N⊥eε is the critical current in the system,N⊥ ∼ A/λ2
F is the number of quantum

conducting channels through the normal part of the system (of cross-section areaA), and
ε ≡ 〈ε(n, kz)〉 ∼ vF /2W is the average interlevel spacing. The imbalance coefficientZ

(|Z| 6 1) depends on the orientation ofd-wave superconductor:

Z =
{ +∑
n, kz

ε
(
n, kz

)− −∑
n, kz

ε
(
n, kz

)}/{ +∑
n, kz

ε
(
n, kz

)+ −∑
n, kz

ε
(
n, kz

)}
(13)

and determines the equilibrium phase difference across the junction,φ0 = ±(1− Z)/2π .
The Josephson energy of the system is thus

U(φ) = 1

2e

∫
dφIJ (φ) = I0

2e

(|φ| − φ0)
2

2π2
(−π 6 φ 6 π). (14)

In equilibrium, the total Josephson current is zero, because contributions from zero- and
π -levels cancel. On the contrary, their contributions to the azimuthal current add up and
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lead to finite spontaneous current. In the situation of figure 1, due to partial cancellation of
terms with positive and negativen, it equals

Is(φ) =

∑
kz

n+(θ, kz)∑
n=n−(θ, kz)+1

(Ja(|n|, kz; φ)− Ja(|n|, kz; φ + π)) if n+(θ, kz) > n−(θ, kz)

0 if n+(θ, kz) = n−(θ, kz)

−
∑
kz

n−(θ, kz)∑
n=n+(θ, kz)+1

(Ja(|n|, kz; φ)− Ja(|n|, kz; φ + π)) if n+(θ, kz) < n−(θ, kz).

(15)

Here ([x] means integral part ofx)

n+
(
θ, kz

) = [ tanθ
√
(k⊥R2)2+ 1/4√

1+ tan2 θ(k⊥R2)2

]
n−
(
θ, kz

) = [cotθ
√
(k⊥R2)2+ 1/4√

1+ cot2 θ(k⊥R2)2

]
. (16)

In the limit β, τ , R, R+W →∞ we return to the result of Hucket al (1997) for a planar
junction†

Is(φ) = πevF√
2W

A
λF 2

sin

(
θ − π

4

)
(F (0, 0; φ)− F(0, 0; φ + π)) 06 θ 6 π/2. (17)

In the annular junction, spontaneous current produces a spontaneous magnetic flux,8s =
L
c
Is , whereL ∼ πR is the self-inductance of the system. Flux magnitude can be estimated

as

8s/80 ≈ N⊥
ζ 2
. (18)

The phase differenceφ = χ1−χ2 is canonically conjugate to the operator of difference
of Cooper pairs’ numbers in the superconducting banks,1n̂ = n̂1 − n̂2. Therefore in
the presence of charging energy due to electron transfer between the banks in an isolated
junction (with classical capacitanceC), φ ceases to be a constant of motion. Its evolution
can be mapped on the motion of a quantum particle in a one-dimensional ring−π 6 φ < π

(see e.g. Tinkham 1996, and references therein), with the Hamiltonian

H
(
φ,

∂

∂φ

)
= h̄2

2MQ

(
1

i

∂

∂φ

)2

+ U(φ) MQ = Ch̄2

16e2
≡ h̄2

8εQ
. (19)

The first term describes the charging energy. The effective potentialU(φ) (figure 2)
corresponds to the Josephson energy:

U(φ) = h̄I0

4π2e

(|φ| − φ0
)2 = N⊥ε

4π2

(|φ| − φ0
)2 = MQω

2
0

2

(|φ| − φ0
)2

(20)

whereε was introduced earlier, and

ω0 =
√(

Ch̄2

16e2

)−1
h̄I0

2π2e
=
√

8

π2
N⊥

εQε

h̄2

† The spontaneous current dependence on the orientation ofd-wave superconductor in (17) differs from the one
obtained in Hucket al (1977) due to a different averaging procedure used in the latter paper.
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Figure 2. Effective potential and transition rates for the phase variable in an annular SND
junction.

is the frequency of small oscillations in a separate well. The dynamics of the system
is thus determined by four parameters:εQ, ε, N⊥ and φ0. We will consider the case
|φ0| � π (or |π − φ0| � π , in which case we should choose 06 φ < 2π ). Then in
the limit h̄ω0, kBT � U(0), we can use the two-well approximation (Landau and Lifshits
1989), and the transition rate between the wells will be given by0 = νA + νT , where
the rate for thermally activated transitionsνA ∼ ω0e−βU(0), and for quantum tunnelling
νT ∼ ω0e−U(0)/h̄ω0.

The phase fluctuations create finite voltage,V = h̄/2eφ, and therefore normal current
GV flows in the normal region (its conductanceG ∼ N⊥e2/πh̄). The corresponding
dissipative function and the decay decrement are

F = 1

2

d

dt
E = 1

2
GV 2 = 1

2
G

(
h̄

2e

)2

φ̇2 γ = 2

MQφ̇

∂F
∂φ̇
= Gh̄2

4e2MQ

= 4

π
N⊥

εQ

h̄
. (21)

The character of quantum fluctuations of the magnetic flux drastically depends on dissipation.
In the limit h̄ω0 � U(0) the conclusions basically reduce to the following (Caldeira and
Leggett 1983). The tunnelling rate exponent multiplies by∼ (1+ γ /ω0). Therefore, if
γ > ω0, tunnelling is suppressed. (Strictly speaking, in this case the description in terms
of initial two-well potential becomes meaningless.) If, on the other hand,

γ

ω0
=
√
N⊥

εQ

ε
� 1 (22)

quantum tunnelling is possible, but quantum coherence between the states in left and right
wells is destroyed†.

The problem is simplified due to phase dependence of the spontaneous current (17),
which can be approximated by

8(φ) = 8ssgnφ(mod2π). (23)

† If γ � 0, the quantum coherence between the states in the wells is preserved under tunnelling, and quantum
beats would take place. This regime is unlikely to realize in the system under consideration due to relatively large
value ofN⊥, and will not be discussed here.
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This allows us to describe the dynamics of8 in terms of a two-level system (Gardiner
1991); state ‘↓’ is when φ is in the left well (8 = −8s), state ‘↑’ when φ is in the right
well (8 = 8s). Therefore we can write a set of coupled master equations for diagonal
terms of density matrix (Blum 1981);

∂

∂t
ρ↑ = 0(ρ↓ − ρ↑)

∂

∂t
ρ↓ = −0(ρ↓ − ρ↑).

(24)

Here ρ↑,↓ gives the probability of occupation of right (left) well (spontaneous flux
±8s). Equation (24) describes random telegraph noise of spontaneous magnetic flux, with
autocorrelation function and spectral density (Gardiner 1985)

〈8(t)8(0)〉 = 82
se
−20|t | (

82
)
ω
= 482

s0

ω2+ 402
. (25)

This noise is temperature dependent atT > T ∗ = h̄ω0/kB , where thermally activated
transitions are more prominent than tunnelling. BelowT ∗, the activated processes freeze
out, and quantum tunnelling remains the sole source of flux noise. Magnetic noise
intensity detected at a certain frequency�, as0 is changed with temperature, will peak at
0(T ) = �/2.

Let us make some numerical estimates. Consider the case when the role of the normal
part of the system is played by a 2D electron gas of a GaAs–AlGaAs heterostructure, with
λF = 450 Å and vF = 2× 107 cm s−1. Then the number of transverse modes isN⊥ =
4πR/λF , and the condition of ‘small’ contact (2) becomesN⊥ < 2ζ

√
W/3 ≈ 250

√
W/3.

It will be satisfied if e.g.N⊥ = 250, (R ≈ 7000 Å), W = 1000 Å. The interlevel spacing
is thenε ≈ 10−5erg. The corresponding spontaneous flux amplitude8s ≈ 0.0280 is within
the experimental capabilities.

The applicability condition of the two-well model imposes the conditionεQ/ε �
(N⊥φ4

0)/128π2, which will be satisfied ifφ0 > (128π2/N⊥)1/4N
−1/4
⊥ ≈ 0.42.

The weak dissipation condition (22) translates intoεQ � 5 × 10−18erg (that is,
total capacitance of the system should exceed∼ 3 × 10−14F). This yields for h̄ω0 �√

8/π2ε2 ≈ ε, that is, ω0 � 1012 s−1. The flux noise characteristic frequency0
is exponentially dependent onφ2

0 (through U(0)), and scales with temperature from
νT ∼ ω0 exp[−U(0)/h̄ω0] at T � T ∗ to νT ∼ ω0 at T � T ∗, and will probably reach a
fraction of GHz.

In conclusion, we have found the Josephson current and spontaneous magnetic flux in
an annular SND junction. The magnitude of the flux is not quantized; it depends on the
parameters of the system and is of the order of few percent of80 for a typical configuration.

We demonstrated that in an isolated system, due to charging effects, there will be
quantum noise of the spontaneous magnetic flux, with characteristic frequency strongly
dependent on the configuration of the system and its surroundings. It can reach a fraction
of GHz. The noise intensity at a fixed frequency will be a non-monotone function of
temperature, allowing measurement of the transition rate0(T ) directly and thus separate
the contributions from thermally activated processes and quantum tunnelling.

We hope that such systems provide experimental observation of a novel dynamical effect
in d-wave superconductivity.

We are thankful to I Affleck, I Herbut and P Stamp for helpful discussions. AZ thanks
A van Otterlo for clarifying remarks. MO was supported by Killam Postdoctoral Fellowship.
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